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� We need to understand and control the microturbulence expected to
cause anomalous transport in tokamak burning plasmas

� Our research compares nonlinear GS2 simulations of microturbu-
lence fluxes with measurements in:

1. Two Advanced Tokamak plasmas
2. One DT ELMy plasma

� The simulated microturbulent fluxes are:

1. Suppressed within � half radius
2. Different for D and T
3. Impurity fluxes small in AT plasmas, inward in the DT ELMy plasma
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Plasmas studied and questions asked

� JET and DIII-D AT plasmas with ITB’s and high bootstrap fractions

1. What causes accumulation of high Z impurities within ITB?
2. Is large externally-driven flow shear ( �� �� ) required?

� JET DT ELMy plasma with record W ��

1. Is the transport of D and T similar?
2. Do impurities accumulate?
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Nonlinear microturbulence simulations with the GS2 code

Electrostatic fluctuations (near future: include magnetic fluctuations & ExB shear)

GS2 scales well up to 1024 processors on IBM SP

Miller equilibria for shaped flux surfaces, up to 6 species

ρ
ion

k                   from 0 up to 0.9 - 3.0poloidal

Collisions modeled using an energy-dependent Lorentz collision operator

n         = 24 - 48poloidal

n      = 24 - 125radial

Start with the Vlasov equation (Maxwell-Boltzmann equation) + collisions

Length scale and time scale ordering, gyro-averaging  ->  gyrokinetic equations

GS2 solves the gyrokinetic equations for evolution of
ll

Tf (x, v  ,v  , species)

Up to 0.94 billion meshpoints to resolve 
ll

Tf (x, v  ,v  , species)



AT plasmas: ITB (defined by large � ��� � � ) ends near q ���
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Profiles of temperatures and q in a) JET and b) DIII-D plasmas
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Microturbulence in JET AT plasma with current hole
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Similar results for particle fluxes and DIII-D AT plasmas

x = 0.30 x = 0.40

Strong suppression for large negative s >

Microturbulence fluxes too large at weak and positive s >
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ELMy DT plasma from JET
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Microturbulent particle fluxes in the JET DT ELMy plasma
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Linear growth rate reduced if impurity density less hollow
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Profiles of heat fluxes in JET DT ELMy plasma
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Results

� Hypersensitive dependence on impurity density profile

� Microturbulence in AT plasmas suppressed when

�
� is sufficiently negative and

� � ��� � � sufficiently large, even with large � ��� � �

� Microturbulence suppressed in DT ELMy plasma within � half-radius, large and

driven by impurity carbon mixing at larger radii

� Need to invoke externally-driven �� �� and/or EM � suppression further out

� Ignoring externally-driven �� �� and � stabilization, GS2 predicts heat and parti-
cle fluxes high by factors of 5-1000

� In AT plasmas impurity fluxes are outward, suggesting that impurity accumulation

inside ITB’s due to neoclassical, not microturbulence effects

� In ELMy plasmas impurity fluxes can be inward

� differing heat and particle fluxes for D and T

� Bursts of energy and particle fluxes in AT plasmas lasting 50-100 microsec



Movies of

�
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